
Risk Analysis, Vol. 41, No. 12, 2021 DOI: 10.1111/risa.13742

A Two-Stage Data-Driven Spatiotemporal Analysis to
Predict Failure Risk of Urban Sewer Systems Leveraging
Machine Learning Algorithms
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Risk-informed asset management is key to maintaining optimal performance and efficiency
of urban sewer systems. Although sewer system failures are spatiotemporal in nature, previ-
ous studies analyzed failure risk from a unidimensional aspect (either spatial or temporal),
not accounting for bidimensional spatiotemporal complexities. This is owing to the insuffi-
ciency of good-quality data, which ultimately leads to under-/overestimation of failure risk.
Here, we propose a generalized methodology/framework to facilitate a robust spatiotempo-
ral analysis of urban sewer system failure risk, overcoming the intrinsic challenges of data
imperfections—e.g., missing data, outliers, and imbalanced information. The framework in-
cludes a two-stage data-driven modeling technique that efficiently models the highly right-
skewed sewer system failure data to predict the failure risk, leveraging a bidimensional space-
time approach. We implemented our analysis for Bogotá, the capital city of Colombia. We
train, test, and validate a battery of machine learning algorithms—logistic regression, deci-
sion trees, random forests, and XGBoost—and select the best model in terms of goodness-
of-fit and predictive accuracy. Finally, we illustrate the applicability of the framework in
planning/scheduling sewer system maintenance operations using state-of-the-art optimization
techniques. Our proposed framework can help stakeholders to analyze the failure-risk mod-
els’ performance under different discrimination thresholds, and provide managerial insights
on the model’s adequate spatial resolution and appropriateness of decentralized management
for sewer system maintenance.
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1. INTRODUCTION

Conventional sewer systems are vital compo-
nents of the urban infrastructure that collect and dis-
pose storm and waste water. Given their important
role in sanitation and disease control, maintaining
the sewer infrastructure in optimal working condi-
tions is of paramount importance for the physical
and economic well-being of any society (Duchesne,
Beardsell, Villeneuve, Toumbou, & Bouchard, 2013).
Among the different challenges that affect the op-
eration of such infrastructure systems, aging and
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deterioration processes of their components are the
principal factors that lead to failures, for which the
high cost is associated with service disruptions, ad-
verse publicity, as well as health and safety problems
(Rodríguez, McIntyre, Díaz-Granados, & Maksi-
mović, 2012). To ensure the proper functionality of
sewer systems, water authorities are responsible for
allocating resources and schedule routine inspections
for maintenance and rehabilitation, keeping in mind
strict time schedules and budget constraints. While
these tasks are already challenging given the size and
complex nature of the underground infrastructure,
they get further complicated when considering the
uncertainties of the future environment, such as
changes in population size, land use, and climate
patterns (Kleidorfer et al., 2013; Shortridge & Camp,
2019).

One of the primary tasks that support the strate-
gic management of sewer systems is the effective vul-
nerability assessment of the infrastructure through
the prediction of failure risks (i.e., knowing a-piori
the likelihood of where and when a failure may occur
given the current conditions of the system). To con-
duct this complex task, most previous studies have
typically used either physics-based or statistics-based
models as their core predictive engines. Physics-
based models are generally composed of computer
simulations based on hydrodynamic and structural
models that analyze the system’s usage and esti-
mate expected times between consecutive failures
(Montes, Vanegas, Kapelan, Berardi, & Saldarriaga,
2020; Rodríguez, McIntyre, Díaz-Granados, & Mak-
simović, 2012; Santos, Amado, Coelho, & Leitão,
2017). On the other hand, statistics-based models
are based on machine learning and statistical con-
cepts and are used to predict future system failures
by studying the probability of occurrences of such
events in the past (Roehrdanz, Feraud, Lee, Means,
Snyder, & Holden, 2017; Salman and Salem, 2012a).
In general, because of the complexity of simulat-
ing the sewer system deterioration processes, incor-
porating a large list of influencing factors (e.g., the
physical properties of pipelines, land and environ-
mental characteristics, and interactions of the sys-
tem with other urban infrastructure), the popular-
ity of physics-based models has decreased over the
past years (Fontecha et al., 2016; Torres, Rodríguez,
& Leitao, 2017), while the statistical models are gain-
ing significant attention (Ana et al., 2009).

As with most predictive tools, the accuracy of
these statistics-based models relies heavily on the
quality of input data (i.e., whether or not the datasets

used to design such models are comprehensive, accu-
rate, and complete). For the particular case of sewer
systems, despite their importance, datasets with such
desirable characteristics are rarely available. There
are several reasons why the absence of comprehen-
sive datasets of sewer systems is a prevalent problem.
First, because of their underground nature, physi-
cal access to the sewer systems is generally limited,
which renders the inspection activities to be capital-
intensive and often disruptive (e.g., temporarily cut-
ting service lines and stopping urban traffic to ac-
cess the system through manholes) (Fontecha et al.,
2020). Second, time and budget constraints limit the
inspection capabilities of water utilities as they can
only investigate a small section of the infrastructure
at a time, rather than inspecting the entire sewer sys-
tem serving a wide region, city, county, or state. Pre-
vious studies have recommended an overall turnover
time for a full sewer system inspection, ideally, to be
between 2 and 25 years depending on the size, condi-
tion/state, and age of the system (McDonald & Zhao,
2001); nevertheless, municipalities often report these
times to be doubled or even tripled under real cir-
cumstances (Allouche & Freure, 2002; López-Kleine,
Hernández, & Torres, 2016).

Despite these data limitations, statistics-based
data-driven research is still a valuable resource to
study the key factors contributing to higher deteri-
oration rates (Ana et al., 2009), as well as identifying
the infrastructure components that have higher risks
of failure (Younis & Knight, 2010). With the advent
of new low-cost sensing and data storage techniques
(Duran, Althoefer, & Seneviratne, 2002) and the
increasing use of interconnected platforms (Sirkiä
et al., 2017), valuable data collected from multiple
sources are rapidly becoming available (Tscheikner-
Gratl et al., 2019). This major progress in data acces-
sibility can empower new models with valuable in-
formation that can be used to mitigate some of the
aforementioned limitations, leading to more accurate
predictions, and therefore, to a better sewer system
vulnerability assessment, facilitating risk-informed
investment decisions, and optimal resource alloca-
tion/management (Fontecha et al., 2020).

From the data quality perspective, previous re-
search studies focusing on the statistical analysis of
sewer systems have handled issues of missing data,
outliers, and imbalanced information in a vague or
indirect manner. In the presence of such data anoma-
lies, most authors practice the removal of outliers
and observations with missing values and often dis-
regard the fact that most real datasets are typically
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populated with imbalanced data (Harvey & McBean,
2014). We argue that these atypical observations
should not be removed since they may provide in-
teresting information about extreme failure events
and, if removed, their occurrence may not be prop-
erly captured by the statistical models. Moreover, as
it is widely accepted by most researchers, imbalanced
data must be handled meticulously because it tend to
bias the prediction algorithms toward the frequently
occurring trend (e.g., not failure) (Chawla, Bowyer,
Hall, & Kegelmeyer, 2002; Harvey and McBean,
2014; Krawczyk, 2016), resulting in models that may
underestimate the critical but less frequently occur-
ring failure events, and thus, significantly underesti-
mating the failure risks.

Although data-driven techniques, such as sta-
tistical learning and machine learning, have gained
significant traction to predict sewer system failures,
another critical factor that may hinder the predic-
tion quality of these methodologies is the lack of
an adequate spatiotemporal analysis in the current
state-of-practice. Despite the fact that failures in a
sewer system infrastructure occur in a spatiotem-
poral context (i.e., a pipe is more prone to fail if it
has failed in the past, has not been replaced, or if its
neighboring pipes have also failed), most previous
works have considered explanatory variables from
an either temporal or spatial perspective, ignoring
the high interdependence of these two key dimen-
sions (Duchesne et al., 2013; López-Kleine et al.,
2016; Soriano-Pulido, Valencia-Arboleda, & Ro-
dríguez Sánchez, 2019; Younis & Knight, 2010). One
of the main reasons why both the spatial and tempo-
ral dimensions are typically considered in an isolated
way is the absence of comprehensive datasets that
provide descriptive information directly regarding
these two aspects. Therefore, to perform an adequate
spatiotemporal study, it is important to first con-
duct a meticulous analysis of multiple data sources
in order to mine and extract data that can reflect
changes in both time and space dimensions. Follow-
ing the initial exploration introduced in Korving,
Van Noortwijk, Van Gelder, and Clemens (2009), to
the best of our knowledge, this manuscript is one of
the first attempts to incorporate explanatory vari-
ables that covary with space and time simultaneously
for sewage systems failure risk analysis.

To address the above-mentioned limitations
of the existing methodologies and approaches, we
propose a novel two-stage data-driven methodology
that predicts the risk of sewer system failures using

spatiotemporal features and considering intrinsic
data imperfections such as imbalanced data, missing
values, and outliers. We test the performance of our
methodology with a case study that analyzes the
sewer system of the city of Bogotá, Colombia. Given
the size and complexity of Bogotá’s sewer system (a
system serving close to 8 million people), we provide
evidence that our framework can be used to effi-
ciently predict the failure risk of large-scale systems
with limited availability of spatiotemporal variables
and comprehensive datasets (common characteristic
observed in large cities’ infrastructure systems). In
doing so, we train, test, and validate a battery of
statistical learning models such as logistic regres-
sion (LR), decision trees (DTs), random forests
(RFs), and extreme gradient boosting, and select
the best-performing methods using a bias-variance
trade-off approach (Mukherjee & Nateghi, 2019).
Finally, we provide an example of how the results
from the proposed data-driven risk assessment pre-
dictive model can be used to inform planning and
scheduling of maintenance operations of the urban
sewer system infrastructure.

The rest of the article is organized as follows:
Section 2 describes the collection and analysis of pre-
vious studies serving three purposes: (1) To high-
light the importance of the machine/statistical learn-
ing models in the area of sewer systems failure risk
prediction, (2) inform the gap in knowledge regard-
ing spatiotemporal explanatory variables, and (3)
present the gap related to the use of methods to
handle data anomalies. Section 3 describes in de-
tail the two-stage methodology, from the manage-
ment of the spatial data to the application of the
predictive models. Section 4 presents the case study,
details the type of variables used in our study, ex-
plains the preprocessing steps to create the final
database, and describes the specific settings for the
prediction models. Section 5 summarizes and ana-
lyzes the results of the application of our methodol-
ogy to the specific case study presented in this article,
discussing the predictive performance of the mod-
els and the top influential variables identified by our
selected model. Section 6 presents a discussion on
the managerial insights relevant to our methodology;
more specifically, a simple optimization exercise that
leverages the outcomes of our failure risk prediction
model as its inputs is presented. The goal of the op-
timization exercises is to perform the optimal plan-
ning and scheduling of the maintenance operations
based on the predicted risks. Finally, in Section 7, we
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summarize our research findings and present the im-
plications of our work.

2. LITERATURE REVIEW

We begin this section by providing an overview
of the existing methods in failure risk assessment of
sewer system infrastructure, focusing our discussion
on descriptive and predictive models. We continue
the section by presenting a general discussion of
some of the challenges that emerge from the manage-
ment of data anomalies, identifying various gaps and
potential opportunities for improvement. We then
conclude the section by summarizing different ways
in which some of these issues can be addressed lever-
aging our proposed methodology.

2.1. Statistics-Based Models for Predicting Sewer
System Failures

2.1.1. Descriptive Models

The methodologies used to describe the failure
mechanisms of sewer systems can be classified into
three major areas: (1) traditional risk-matrix-based,
(2) data-driven, and (3) probabilistic approaches.

Under the category of risk-matrix-based ap-
proaches, we reviewed a series of studies that used
quantitative methods to analyze the sewer deteri-
oration process and estimate potential failures. For
example, Korving et al. (2009) proposed a risk-based
model for the economic optimization of in-sewer
storage. In this article, the authors consider several
properties of the system, such as its dimensions,
storage and pumping capacities, as well as other
uncertain exogenous components like spatial and
temporal variations in rainfall. The authors used
several cost functions to capture the environmental
and economic impacts with respect to the in-sewer
storage design and rehabilitation decisions. Salman
and Salem (2012b) studied the risk of failure of sewer
pipes by modeling the probability and consequences-
of-failure values using three different methods:
simple multiplication, risk matrices, and fuzzy infer-
ence models. They used the resulting assessments to
generate sewer risk maps to assist water management
agencies to identify sewer-pipe sections that require
immediate attention. Similarly, Kuliczkowska (2016)
analyzed the risk of structural failures of sewer
pipes due to internal corrosion using a risk-matrix
generated by categorizing the structural failure prob-

abilities and the associated consequences caused by
sewer failures.

As for the area of data-driven approaches, sev-
eral studies have used this type of models to ana-
lyze the different factors responsible for sewer sys-
tem failures. For example, Ana et al. (2009), Ugarelli,
Kristensen, Røstum, Sægrov, and Di Federico (2009),
and Younis and Knight (2010) used regression anal-
ysis techniques for the selection of important sys-
tem features that have a strong impact on sewer
deterioration. In particular, Ana et al. (2009) pro-
posed a backward stepwise regression approach to
systematically drop insignificant variables in an iter-
ative manner to improve the predicting capabilities
of their model. Ugarelli et al. (2009) used an evolu-
tionary polynomial regression (EPR) model to iden-
tify the critical attributes of sewer pipelines that have
a significant influence on the number of blockages
that may accumulate in a given time period. You-
nis and Knight (2010) proposed a generalized linear
model (GLM) to estimate the deterioration behav-
ior of reinforced concrete and vitrified clay pipes. To
this end, the authors developed an ordinal regression
model based on cumulative logits that considers the
interaction effect between the different explanatory
variables. The model estimates the probabilities for
wastewater pipelines of being into one of five inter-
nal condition grades.

In addition to regression analysis techniques,
other data-driven methods have also been used to
identify relevant variables to model the system’s de-
terioration. For example, López-Kleine et al. (2016)
used principal components analysis (PCA) coupled
with k-means clustering to determine the relation-
ship between structural characteristics of sewer pipes
and their deterioration states. The relationships that
were detected in this study helped the authors to
identify the variables with a strong influence on the
state of pipelines. Carvalho, Amado, Brito, Coelho,
and Leitão (2018) applied three different variable se-
lection algorithms, namely: the mutual information
indicator, the out-of-bag samples concept (based on
RF algorithms), and the stepwise search method, for
identifying the variables that most significantly influ-
ence the quality of sewer failure predictions.

In the area of probabilistic approaches, pre-
vious papers focused on studying several random
factors that contribute to the sewer system deteri-
oration process. Studies such as Micevski, Kuczera,
and Coombes (2002), Korving and Van Noortwijk
(2008), Jin and Mukherjee (2010), and Rodríguez
et al. (2012) used a combination of stochastic
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methods and statistical tests to model different per-
formance metrics like the time between consecutive
system failures. Micevski et al. (2002) used a homoge-
neous Markov chain to analyze the structural deteri-
oration of stormwater pipelines. The authors applied
a Bayesian approach to calibrate the parameters of
the model, and chi-square tests to identify the signifi-
cant factors responsible for sewer pipe deterioration.
Korving and Van Noortwijk (2008) used a statistical
model for assessing the sewer conditions based on a
combination of expert knowledge and sewer inspec-
tions. The model was updated with data from the
inspections using Bayesian statistics. Additionally,
a Dirichlet distribution was used to model prior
knowledge on condition-state probabilities. Jin and
Mukherjee (2010) analyzed the interarrival time be-
tween sewer blockages using different statistical tests
such as the Kolmogorov–Smirnov test to investigate
any statistically significant differences between the
available subsets of data, and the Anderson–Darling
test to compare and select the best distribution for
modeling blockage interarrival times. Rodríguez
et al. (2012) used homogeneous and nonhomoge-
neous Poisson processes to model the interarrival
time between sewer blockages as a function of
several system properties, and Post, Pothof, ten Veld-
huis, Langeveld, and Clemens (2016) used statistical
tests to further investigate whether sewer failures
can be modeled as a homogeneous Poisson process.

In addition to the aforementioned traditional
stochastic models, numerous studies such as Duch-
esne et al. (2013) and Egger et al. (2013) used mathe-
matical techniques to solve problems inherent to typ-
ical failures in sewer systems. For example, Duchesne
et al. (2013) developed a model based on survival
analysis principles to assess the overall structural
state of a sewer network. In contrast to most Markov
chain models, this approach allows for the possibil-
ity of modeling transitions from multiple deteriora-
tion stages at each time step. Egger et al. (2013) pro-
posed a combined sewer deterioration and rehabili-
tation model that is able to mitigate the challenges
behind the lack of historical records of sewer condi-
tions.

A careful analysis of the extant literature indi-
cates that the methodologies used to conduct de-
scriptive analytics on sewer systems have some disad-
vantages. In particular, risk-matrix-based approaches
may exhibit an inherent subjectivity introduced by
the decision-maker during the assignment of the
weights and scores of the input factors responsible
for sewer failures. Such subjective assessments can

potentially result in loss of information, thus hinder-
ing the overall predictive power of the models. Sim-
ilarly, most approaches that use probabilistic mod-
els are often calibrated for the specific conditions
of the systems being considered in their respective
studies and are often difficult to adapt for analyz-
ing other systems. Without introducing a major refac-
toring, such models may be invalid for other sys-
tems featuring entirely different failure mechanisms
and risk conditions. As for the case of existing data-
driven models, despite being effective at identifying
failure risk factors, these models are not necessarily
designed for forecasting sewer failures as a function
of the identified risk factors. In this article, we pro-
vide evidence that some of these limitations can be
mitigated by utilizing a combination of statistical and
machine learning methods; which, extracting com-
plex patterns from historical data, provide reliable
future estimates of sewer failures without relying on
subjective assessments by experts.

2.1.2. Predictive Models

In this section, we provide a discussion on the
existing predictive models, both parametric and non-
parametric, which have been used to estimate the risk
of sewer system failures.

Parametric approaches are model-based meth-
ods that assume a predefined functional form of the
response defined by a set of parameters (Hastie,
Tibshirani, & Friedman, 2009; James, Witten, Hastie,
& Tibshirani, 2013). This category of models includes
regression analysis and stochastic modeling. Stud-
ies that have utilized regression analysis to study
sewer system failures include Chughtai and Zayed
(2008), Younis and Knight (2010), Salman and Salem
(2012a), and Roehrdanz et al. (2017). In particular,
Chughtai and Zayed (2008) used multiple linear
regression to predict the structural deterioration of
sewer systems. These models were created indepen-
dently for different materials (concrete, asbestos,
cement, and polyvinyl chloride [PVC] pipes), while a
generalized operational condition model was devel-
oped considering all the materials together. The data
used in this study included general pipeline inventory
records, AutoCAD drawings, and closed-circuit tele-
vision (CCTV) inspection reports. Salman and Salem
(2012a) estimated the probability of failure for sewer
system sections using ordinal regression, multinomial
LR, and binary LR. The authors also compared the
estimated condition ratings with the observed data
and found that the binary LR model provided the
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most accurate results. Similarly, Roehrdanz et al.
(2017) computed the probability of an exfiltrating
defect occurrence within each pipeline section using
the multifactor binary LR introduced in Salman and
Salem (2012a).

In the domain of parametric models, past stud-
ies have also utilized stochastic modeling to pre-
dict failure conditions in sewer systems. For exam-
ple, Le Gat (2008) modeled the deterioration of
urban drainage infrastructure using a mixed mul-
tistate stochastic process represented by a nonho-
mogeneous Markov Chain. In this representation,
the authors considered the transition probabilities
between states not only to be time-dependent but
also conditioned on a set of covariates and pipeline-
specific random frailty factors. Soriano-Pulido et al.
(2019) proposed a framework using a log-Gaussian
Cox process to assess the impact of the spatiotempo-
ral correlation between sediment-related blockages.
This framework was based on factors associated with
the spatiotemporal clustering of failures, which are
characterized by physical properties of the sewer sys-
tem or characteristics of the location where the fail-
ure event occurs, and temporal properties such as
the precipitation data. The principal advantage of
using these frameworks is to provide a flexible and
relatively tractable class of empirical models for ef-
fectively describing spatially and temporally corre-
lated phenomena.

Unlike parametric models, nonparametric mod-
els neither make strong assumptions about the input
parameters nor the form of the mapping function.
These flexibilities allow these models to freely learn
any functional form from the training data. Non-
parametric models include mainly tree and network-
based models and have been widely used over the
past few years. In the context of tree-based mod-
els, Harvey and McBean (2014) used the information
from CCTV inspections to predict individual pipeline
conditions of the sewer system. In this study, the
training data were fed into a RF model designed to
inform proactive maintenance policies. Baah, Dubey,
Harvey, and McBean (2015) computed the risk of
pipeline failure by estimating the condition grade
of sewer pipes using probability values provided by
Harvey and McBean (2014), and then, determining
the consequence of failure (CoF) as the weighted
average of the performance scores in terms of sev-
eral impact factors (e.g. pipe size and roadway type).
The condition grade of the pipelines was calculated
by training an RF algorithm using a dataset consist-
ing of 138 bad pipes and 1,117 good pipes, reach-

ing an overall accuracy of 72%. In a subsequent
study, Baah et al. (2015) provided a map incorporat-
ing the risk of sewer pipe failures and the conditions
of failures using ArcGIS. In addition to the stud-
ies that used tree-based models, Mashford, Marlow,
Tran, and May (2011) used a support vector machine
model to predict the sewer condition over a sam-
ple dataset of 1,441 observations. The observations
were randomly divided into a training set (75%) and
a test set (25%), and the performance of the model
was evaluated using several metrics such as the over-
all success rate, misclassification rate, goodness of fit,
and agreement test.

In the area of network-based models, Bayesian
belief networks (BBNs) and artificial neural net-
works (ANNs) are some of the most commonly
used methods to make predictions about the con-
dition of underground infrastructure (such as sewer
pipelines). These models can be used to handle the
relationships between the parameters and factors
that affect the deterioration process while consider-
ing uncertainties for risk and consequence analysis.
The use of BBN is appropriate when the data avail-
able for analysis are scarce and incomplete, while
ANN can be used when a considerable amount of his-
torical data is available. In case of missing data, BBN
models benefit from experts’ knowledge and tech-
nical literature, while ANN models can provide in-
sights into cause–effect relationships and uncertain-
ties through learning from the data (Kabir, Balek, &
Tesfamariam, 2018).

Furthermore, Hahn, Palmer, Merrill, and Lukas
(2002), Anbari, Tabesh, and Roozbahani (2017), and
Kabir et al. (2018) developed a Bayesian network to
predict CoF, likelihood of failure, and the need for
inspection. Hahn et al. (2002) used six parameters
to obtain the likelihood of failure (i.e., structural de-
fects, interior corrosion, exterior corrosion, erosion,
infiltration, and operational defects) and employed
two mechanisms to predict the CoF (i.e., socioe-
conomic impacts and reconstruction impacts). The
knowledge base was evaluated with a series of case
studies and the proposed methodology was found
to be effective at mimicking the knowledge of ex-
perts. Anbari et al. (2017) proposed a risk assessment
model based on BBN to prioritize sewer pipe inspec-
tions. In this model, the risk of a sewer pipe failure
was obtained from the integration of probability and
CoF values using a fuzzy inference system (FIS). On
the other hand, Tran, Ng, and Perera (2007) provided
an example of the use of ANN for the prediction
of serviceability condition deterioration of the sewer
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system. The serviceability condition of the pipes was
associated with the reductions in pipe diameter.

In the search for efficient models and tools to
predict the physical condition of underground sewer
infrastructure, studies such as Sousa, Matos, and Ma-
tias (2014), Jiang, Keller, Bond, and Yuan (2016),
Santos et al. (2017), Caradot et al. (2018), and
Hernández, Caradot, Sonnenberg, Rouault, and Tor-
res (2018) were aimed to compare a collection of dif-
ferent models, and identifying the ones that produced
the best results under several conditions. Addition-
ally, Laakso, Kokkonen, Mellin, and Vahala (2018)
and Elmasry, Hawari, and Zayed (2017) coupled dif-
ferent models as a part of a single framework with
the idea of combining the predictive capabilities of
such models in a single tool. Sousa et al. (2014) com-
pared ANN, support vector machines (SVM), and
LR to classify the sewer system into sections requir-
ing immediate intervention and sections that are not
expected to fail in the near future. Jiang et al. (2016)
compared linear regression and ANN to identify the
initiation time for corrosion and the corrosion rate
after its initial detection in the concrete sewer pipes.
Santos et al. (2017) used five different stochastic pre-
diction models with the objective of identifying a tool
that performed well with respect to prediction ac-
curacy and robustness. Their findings showed that
the nonhomogeneous Poisson process provided the
best prediction results, while the performance of DTs
based on RF had a better performance for cases with
short-term prediction window. Caradot et al. (2018)
developed a set of metrics to assess and compare the
performance of RF and Markov chains. These mod-
els were used to predict three levels of sewer condi-
tion: good, medium, and bad. Hernández et al. (2018)
evaluated two different models’ predictive outcomes,
namely, LR and RF, for two different case studies, a
city in Europe and a city in South America. The mod-
els were used to predict the critical structural con-
dition of sewer pipes in both cities on a four-level
scale.

With respect to the integration of models, Laakso
et al. (2018) proposed an LR approach and compared
its performance with the corresponding RF model.
This framework was also coupled with the Boruta
method that is a variable selection algorithm for de-
tecting relevant explanatory variables. Elmasry et al.
(2017) developed a BBN and then integrated it to
multinomial LR in order to transform the static BBN
into a dynamic Bayesian network.

Table 1 summarizes the classification of the
methodologies found in this literature review.

2.2. Challenges Related to Data-Driven Research

We identified several challenges and issues re-
lated to the data used in data-driven research, and
categorized them into three fronts: (1) the type of in-
formation used for the explanatory variables; (2) the
potential issues identified by authors regarding miss-
ing data, outliers, and imbalanced datasets; and (3)
the dimension (temporal, spatial, and spatiotempo-
ral) of the input data used to explain the response
variables. Table 2 provides a detailed summary of the
literature from the perspective of the various types of
features or explanatory variables used and the data
issues identified in the previous research studies.

2.2.1. Type of Explanatory Variables Used

While identifying the explanatory variables used
to assess and predict the sewer system condition, we
found four major sets of explanatory variables gener-
ally used in previous research studies: (1) physical-
condition-related factors, 2) environmental factors,
3) demographic factors, and 4) variables related to
other infrastructure or elements of the urban land-
scape. In the case of physical-condition-related vari-
ables, the most common variables are found to be
related to the pipelines’ characteristics (e.g., the di-
ameter, length, slope, age, material, depth, type of
effluent, and shape). Besides the physical character-
istics of the infrastructure, the second most impor-
tant variables used in previous studies correspond
to interaction-based features. In this regard, we re-
fer to the variables that are usually related to the
urban landscape such as roads or trees (e.g., road
types, road proximity, traffic volume, tree density,
tree types, and tree proximity). The studies that con-
sidered these types of variables account for more
than half of the papers reviewed, and it is summa-
rized in Table 2. Weather and environment-related
variables are not as common as the previously men-
tioned variables. This is an important shortcoming of
the previous studies as it is well established that the
management and assessment of infrastructure risk
usually rely on climate-related historical data (Short-
ridge & Camp, 2019). The most common variables
in this category are soil type, humidity, temperature,
and precipitation. The type of variables that are most
rarely considered in the previous studies includes
the demographics and land use type of the region
where the sewer system infrastructure is located. In
this category, we identified variables related to land
use, population density, district, zone, location, and
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Table 2. Summary of Literature Review: Data Dimension

Reference Features Data Issues
Physical Environmental Demographic Interaction Missing Outliers Imbalanced

Kuliczkowska (2016) � � � �
Laakso et al. (2018) � � � � �
Tran et al. (2007) � � � �
Mashford et al. (2011) � � � �
Soriano-Pulido et al. (2019) � � �
Micevski et al. (2002) � �
Le Gat (2008) �
Jiang et al. (2016) � �
Harvey and McBean (2014) � � � � �
Baah et al. (2015) � � � �
Kabir et al. (2018) � � �
Caradot et al. (2018) � � �
Chughtai and Zayed (2008) � � �
Salman and Salem (2012a) � � �
Elmasry et al. (2017) � �
Anbari et al. (2017) � �
Roehrdanz et al. (2017) � �
Hernández et al. (2018) � �
Santos et al. (2017) � � �
Duchesne et al. (2013) � � �
Sousa et al. (2014) � �
Ugarelli et al. (2009) � �
Carvalho et al. (2018) � �
López-Kleine et al. (2016) � �
Rodríguez et al. (2012) �
Younis and Knight (2010) �
Ana et al. (2009) �
Hahn et al. (2002) �
Salman and Salem (2012b) � � �
Post et al. (2016) � �
Korving and Van Noortwijk (2008)
Jin and Mukherjee (2010)
Korving et al. (2009) � �
Egger et al. (2013)
Proposed approach � � � � � � �

the proximity to some specific city landmarks such
as hospitals and schools. Finally, it can be observed
from Table 2 that most of the studies do not consider
more than two categories as their explanatory vari-
ables, the only exception being the study conducted
by Kuliczkowska (2016). A summary of the distribu-
tion of these types of variables as observed from the
literature can be found in Table 2.

2.2.2. Data Issues

Three common data issues that need to be con-
sidered include: (1) missing data, (2) outliers, and (3)
imbalanced datasets. Note that missing information
is generally related to the explanatory variables (i.e.,
the X variables), while outliers and imbalanced data

are usually related to the target variable (i.e., the y
variable).

Perhaps, the most common problem that previ-
ous research studies have faced while working with
the infrastructure condition and maintenance data is
the missing data. Table 2 shows a summary of the re-
viewed studies that deal with missing data. It is sur-
prising that most of the studies that were reviewed do
not mention the presence of missing data in their cor-
responding datasets or even if it is mentioned, most
of the researchers simply opted for removing the
corresponding observations from the original dataset
without any further considerations, perhaps leading
to a loss of valuable information (e.g., Caradot et al.,
2018; Harvey & McBean, 2014; Post et al., 2016; San-
tos et al., 2017; Sousa et al., 2014; Tran et al., 2007;
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Ugarelli et al., 2009). Only a few of the aforemen-
tioned studies explained in detail the data imputa-
tion process. For example, Duchesne et al. (2013) dis-
cussed that the installation date of pipes, which was
not available in the dataset, was estimated based on
the age of surrounding infrastructure; Laakso et al.
(2018) used RF imputation to face the problem of
missing data; and Egger et al. (2013) introduced a
sewer system deterioration model to deal with the
missing historical records.

Similar to the missing data, in the case of the out-
liers, only a few research studies mentioned their im-
portance and presence in the dataset (see Table 2).
In most of the studies, the anomalous observations
were simply removed from the datasets (e.g., Car-
valho et al., 2018; Laakso et al., 2018; Santos et al.,
2017). In some of the studies, outliers were identi-
fied and removed after a further analysis. For ex-
ample, in studies by Chughtai and Zayed (2008)
and López-Kleine et al. (2016), atypical observations
were marked based on normal probability plots and
box plots, respectively, and then were removed from
the final dataset.

In addition to missing data and outliers, the dis-
tribution of failure counts associated with the sewer
systems is generally imbalanced (Harvey & McBean,
2014). However, in most of the literature reviewed in
this article, authors mostly fail to account for the is-
sues regarding the imbalanced data and even if they
consider it, they do not discuss any specific proce-
dures used to handle this common problem. For ex-
ample, Baah et al. (2015) only mentioned that the
data used were imbalanced, but provide no further
information on how they handle such an issue, lead-
ing the reader to assume that they followed a sim-
ilar strategy used by Harvey and McBean (2014).
A few studies, such as Harvey and McBean (2014)
and Duchesne et al. (2013), addressed this issue by
combining multiple risk classes into a small number
of classes.

2.2.3. Dimensionality of the Data

Our comprehensive literature review indicated
that most of the research studies considered vari-
ables in the dimension of space and time in an iso-
lated way (i.e., they did not consider variables de-
fined over more than one dimension). Only the study
conducted by Soriano-Pulido et al. (2019) described
a spatiotemporal analysis of the failures in the sewer
system infrastructure. Several authors, for example,
Ugarelli et al. (2009), Rodríguez et al. (2012), and

Soriano-Pulido et al. (2019) presented the target vari-
able (y) as a spatiotemporal variable, while Korv-
ing et al. (2009) described the explanatory variable
such as the rainfall as a spatiotemporal variable, in
their studies, respectively. However, the unique work
that claims to analyze the risk of failures from a
spatiotemporal dimension is by Soriano-Pulido et al.
(2019). Despite this effort, the authors fail to ac-
knowledge that the only spatiotemporal variable in
their model is the response variable (i.e., the occur-
rence of failures), while the other explanatory vari-
ables (X) are either spatial or temporal.

2.3. Insights and Gaps Identified from the Current
Body of Knowledge

We reviewed an extensive pool of the litera-
ture to present the various types of state-of-the-art
methodologies used to evaluate the risk of sewer sys-
tem failures (see Table 1) and summarized the var-
ious types of data issues identified in the previous
studies (see Table 2). As evident from the reviewed
literature, prediction algorithms based on statistical
and machine learning techniques have gained wide
attention from researchers for developing tools and
frameworks that support proactive maintenance of
urban sewer systems. In addition, to accurately iden-
tify trends and patterns prevalent in historical data,
these algorithms prove to be quite effective in pro-
viding critical insights regarding the risks and inher-
ent uncertainties associated with the sewer system
deterioration process. Despite the advances, there
are several challenges related to the quality of data
that need to be efficiently tackled and addressed.
Thus, we develop a failure risk model for an ur-
ban sewer system infrastructure by leveraging sev-
eral machine learning algorithms based on differ-
ent mathematical approaches (both parametric such
as regression-based and nonparametric such as tree-
based methods). By offering a better prediction per-
formance as well as facilitating the identification and
evaluation of the various risk factors, our proposed
model can help the water utilities in the efficient and
proactive maintenance of urban sewer system infras-
tructure. In addition, we also present some general-
ized strategies to handle the various data issues as
mentioned in previous sections. Finally, unlike pre-
vious studies, we propose a framework that can ef-
ficiently account for the multidimensionality of the
(spatiotemporal) explanatory variables (X).
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Fig 1. Overview of the two-stage methodology. First, collect data. Then, process the data correcting data issues and constructing spatiotem-
poral information. Finally, run the workflows in the different stages to define the hyperparameters for the machine learning models. Evaluate
the performance of specific workflows through the use of norm 2 of the seek performance metrics.

3. METHODOLOGY

This section describes our proposed two-stage
data-driven risk-prediction framework leveraging
state-of-the-art machine learning algorithms and
considering spatiotemporal information. We discuss
the data preprocessing step focusing on resolving the
various data issues as described before (e.g., pres-
ence of outliers, missing data), and then we de-
scribe the research methodology. We also present
ideas behind the process of exploiting dimensional-
ity transformation of data features (i.e., transform-
ing single-dimensional raw data, mainly defined in-
dividually over the time or space dimensions) into
two-dimensional spatiotemporal data to match the
dimension of explanatory and response variables,
and therefore, performing a robust analysis. Fig. 1
presents an overview of the proposed methodology.

3.1. Data Preprocessing

The data preprocessing part can be divided into
two steps, namely: data issues management and the
spatiotemporal transformation of explanatory vari-
ables. As mentioned in the literature review, some
of the typical issues when working with sewer sys-
tems’ databases include the presence of missing data,
outliers, and imbalanced observations. Generally, the
former is related to the explanatory variables X,
while the latter two are related to the target variable
y.

3.1.1. Data Issues Management

To address the missing data issue, we employ a
methodology that uses information from the neigh-
borhood of the missing observation to impute its
corresponding value. Such a neighborhood can be
defined and selected dynamically depending on the
information available within the neighborhood that
will make the missing data imputation possible. For

example, if a neighborhood of a specific size (ini-
tially selected) fails to provide enough information
to impute the missing data, the proposed algorithm
will iteratively increase the size of the neighborhood,
based on certain problem-dependent rules, until the
targeted data imputation is achieved. This procedure
can be applied to impute missing data on any of the
variables in the dataset X, by defining the neighbor-
hood from a spatial and/or temporal closeness per-
spective.

In this study, our rationale for utilizing a neigh-
borhood data imputation approach is based on the
fact that there is a higher likelihood that similar
types of infrastructure are installed around the same
timeline (Duchesne et al., 2013) (i.e., construction
timeline of the sewer systems) in adjacent loca-
tions, thus sharing similar structural characteristics
between them. Furthermore, because of the under-
ground nature of sewer systems infrastructure, ren-
ovations and new installations are both costly and
disruptive. Considering the economies of scale be-
hind the construction process, major updates and
renovations to sewer systems are typically conducted
when there are enough adjacent components to be
added/replaced (e.g., pipelines, manholes, and gully-
pots) to justify the costs. Therefore, unless several ad-
jacent data points are missing, it is unlikely for indi-
vidual components to differ greatly in physical condi-
tion from their neighbors.

Inspired by k-nearest neighbors technique
(Faisal & Tutz, 2017), as well as by scattered data in-
terpolation methods (Franke, 1982; Shepard, 1968),
we propose a new neighborhood-based approach
by defining such a neighborhood through spatial
variables, where the neighborhood is dynamically
increased in size at each iteration. Here, such vari-
ables correspond to the physical location of the
infrastructure distributed over space, but in other
contexts, it can be defined using other specific sets
of variables, for example, the neighborhood can be
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Fig 2. Three iterations defining the neighborhood for the data imputation. From iteration 1 to 3, the neighborhood is increasing. Iterations
1 and 2 do not have observations in the neighborhood; therefore, no data can be imputed. Iteration 3 provides observations within the
neighborhood and specific imputation techniques can be applied.

defined over time dimension rather than the space
dimension. Fig. 2 depicts the iteration process for
the data imputation. It is noteworthy that within the
boundary of a neighborhood, any specific method
for data imputation as those described in studies by
Allison (2002); Yuan (2010) and Soley-Bori (2013)
can be applied (e.g., mean, median, linear regression,
and maximum likelihood).

Importantly, we note that the inference quality
of this method depends on several factors like the
stopping criteria for growing the boundary size of the
neighborhood. Clearly, no general framework exists
to identify a one-size-fits-all optimal value for these
parameters, as those are strongly dependent on the
specific type of application being modeled, the in-
tegrity of the datasets, and the expected model ac-
curacy as needed for informed decision-making. For
example, while imputing missing data about a sewer
system in a densely populated urban area, it is likely
that the amount of infrastructure that exists in a
relatively small neighborhood conveys sufficient in-
formation for a proper estimation of missing data,
whereas in a less populated rural area, a much larger
neighborhood may be required to produce similar re-
sults. We will provide the step-by-step process of im-
plementation of this method, with an application to
our case study, in Section 4.

From the data quality perspective, outliers rep-
resent a key challenge that needs to be addressed
during the data-processing step. In contrast to the
missing data, outliers are usually related to the target
variable y. Although in several previous studies re-
searchers removed outliers from the dataset, we ar-
gue that outliers (i.e., atypical observations) should
not be removed, especially in the context of our
study, as they present important information about
extreme failure events and associated higher risks;
thus, we retained the atypical observations in our fi-
nal dataset. Similarly, imbalanced datasets are also

common in the context of infrastructure failure data.
To address this issue, we propose to develop a two-
stage predicting modeling approach to model the
sewer system failure risk (Wang, Lan, & Wu, 2017),
which is explained in detail in Subsection 3.2.

3.1.2. Spatiotemporal Transformation

In this section, we discuss the strategies that can
be used to address some of the discrepancies that of-
ten exist with the spatiotemporal aspect of the ex-
planatory variables X and the target variable y. In
general, when designing predictive frameworks, suffi-
cient historical information exists to define the target
variable over space and time dimensions, but there is
not enough information to do the same for some of
the explanatory variables. For instance, in the con-
text of predicting sewer system failures, where the
target variable y represents the number of failures
observed at a given location during the course of a
predefined time frame (e.g., a month), water utilities
tend to record the detailed information of the fail-
ure events including both the time of occurrence and
the location of the event. On the other hand, as dis-
cussed in Section 2.2, despite the fact that some of
the explanatory variables X also span in both space
and time dimensions, datasets consisting of historical
information of those variables often lack sufficient in-
formation associated with both the dimensions.

For example, in the context of a weather-related
explanatory variable like the precipitation level, most
of the databases provide thorough information of the
precipitation levels across time, but not in the spa-
tial dimension (Soriano-Pulido et al., 2019). This is
because the weather agencies collect their data by
placing only a few sensors scattered over the area
of study. Therefore, weather databases often contain
sparse information on the spatial variations of such
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variables, which, in turn, is significantly less granular
than the target variable.

Most studies that attempt to model failure
risks of sewer systems often resort to using one-
dimensional variables as they are directly accessi-
ble from the data, without attempting to interpolate
them into their bidimensional natural form by means
of additional available information. We propose a
systematic approach to produce spatiotemporal data,
matching the scale of the target variable.

Let x(s, t) be the transformed explanatory vari-
able that one expects to generate, defined over both
space s and time t, and let x(s) = projsx(s, t) and
x(t) = projtx(s, t) represent the corresponding pro-
jections of x(s, t) into the space and time dimensions,
respectively. For a given context, suppose that the
available database contains sufficient temporal in-
formation for a good sampling of x(t). Ideally, we
would like to obtain the inverse of the temporal pro-
jection, so as to generate the spatiotemporal vari-
able x(s, t) directly as x(s, t) = proj−1

t x(t). However,
since dimension-reduction projections like the ones
described before are not bijective (i.e., multiple val-
ues of x(s, t) may project into the same x(t)), such an
inverse is not well defined.

The key idea of our proposed approach is to
take advantage of the partial information that is of-
ten available for the other dimension to produce a
two-dimensional estimation of the given explanatory
variable. To this end, there are different types of
other functions f that can be used in place of such
inverse functions to estimate the two-dimensional
spatiotemporal variables. For example, consider the
precipitation-level variable described before. To ac-
count for spatial variability, hydroscientists have tra-
ditionally used interpolation techniques to create
heterogeneous precipitation surfaces over study ar-
eas. One of the most well-known methods used is
“Kriging interpolation,” which uses geostatistics to
generate an estimated surface from scattered points
(Karnieli, 1990; Yang, Xie, Liu, Ji, & Wang, 2015).
More specifically, the Kriging interpolation algo-
rithm is used to produce a mean precipitation sur-
face for each time step (e.g., mean precipitation per
year/month/day). Note that in this case, the function
f is the Kriging interpolation function that takes the
temporal variable x(t) as an input and transforms it
to a spatiotemporal variable x(s, t). Similarly, using
other functions, spatial variables can be transformed
into spatiotemporal variables. For example, consider
the population density as a variable distributed over
space (i.e., x(s)); using forecasting techniques, such
a variable can be transformed to its corresponding

spatiotemporal form x(s, t). Thus, identifying the ac-
curate function f to transform one-dimensional data
to the spatiotemporal dimension (s, t) is instrumental
in the data preprocessing phase.

3.2. Prediction Modeling

3.2.1. Two-Stage Model

After the collected data are preprocessed using
the various techniques mentioned in Section 3.1, our
prediction model is developed using advanced ma-
chine learning algorithms. To predict the failure risk
in an urban sewer system infrastructure, we propose
a two-stage classification procedure. In the first stage,
we consider the response variable y that consists of
two classes: (1) No Risk (N) and (2) Risk (R). Here,
the risk can be assessed based on different measures,
for example, the number of failures in a specific com-
ponent/place in a specific slot of time. Therefore, for
a given input data, if the number of failures is zero,
the response variable is classified as N; otherwise, it
is categorized as R. In the second stage, given that
there is a risk of failure (R), the level of risk is fur-
ther categorized into various levels based on the fre-
quency of failures. To define the risk-level categories,
we propose to use a quantile-based classification ap-
proach that has been found to efficiently model a
response with heavy-tailed distribution (Mukherjee,
Nateghi, & Hastak, 2018; Mukherjee, Vineeth, &
Nateghi, 2019). In the context of the case study pre-
sented in this article, we categorized the failures (R)
into high-risk failures (H) (all observations above the
third quartile) and low-risk failures (L) (all obser-
vations less than the third quartile). Based on this
design of our response variable, we implement the
proposed two-stage risk prediction modeling frame-
work. In stage 1, failure risk class (R) is predicted,
and the set of observations correctly predicted by the
model (true positives) is used as an input for the pre-
diction of risk levels (severity) in stage 2.

The two-stage modeling approach offers several
advantages. As evident from the literature, the dis-
tribution of failure risks in a sewer system is highly
skewed since the class representing the no risk (N)
category appears to be much more prevalent in the
dataset (Harvey & McBean, 2014). This type of dis-
tribution poses a challenge for training prediction al-
gorithms, which tend to be biased toward the major-
ity class. However, as mentioned before, the extreme
observations (rarely occurring extreme failures) can-
not be just removed, treating them as outliers. Espe-
cially, in the context of characterizing infrastructure
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failure risk, it is critical to characterize the heavy-tail
distribution of the data (Krawczyk, 2016). By design,
our proposed two-stage risk prediction model can
address these challenges by categorizing and analyz-
ing the dataset into distinct classes (e.g., N, R, H, L),
and thus, eliminating the bias toward any class.

3.2.2. Prediction Workflow

The aforementioned two-stage risk estimation
model can be implemented using our proposed work-
flows that automate the machine learning proce-
dures. These workflows execute several steps of data
transformation and model execution in an iterative
manner to improve the prediction performance of
machine learning algorithms. The specific steps in
our proposed workflow are as follows: (1) use meth-
ods of data transformation by applying feature scal-
ing to the input features (e.g., normalization, stan-
dardization) and avoid bias toward higher-order-of-
magnitude values; (2) apply algorithms for balancing
the class distribution on training data (e.g., SMOTE
[Chawla et al., 2002], SMOTE with ENN [Batista,
Prati, & Monard, 2004]) to eliminate bias toward
the majority class; (3) use dimensionality reduction
methods (e.g., PCA, linear discriminant analysis) to
reduce the dimension of the input feature space un-
der consideration and obtain a set of principal vari-
ables (Roweis & Saul, 2000); and finally, (4) train and
test different machine/statistical learning algorithms
(e.g., DTs, RF, neural networks, support vector ma-
chines) to predict the sewer system failure risk.

Note that for each of the workflow’s steps, only
one of several methods can be used. As a result, dif-
ferent workflow candidates (i.e., combinations of dif-
ferent workflow steps) can be considered to predict
the sewer system failure risks. To evaluate the perfor-
mance of the candidate workflows against each other
and select the one that outperforms all the other can-
didates, we define an index, called performance in-
dex, based on the norm 2 of a set of relevant perfor-
mance metrics (e.g., accuracy,1 precision,2 recall,3 F1-
score4). Let

1Accuracy is the ratio of the total number of correct predictions to
the total number of predictions made for a given dataset.

2Precision is the ratio of correctly predicted positive examples to
the total number of positive examples that were predicted.

3Recall quantifies the number of correct positive predictions made
out of all positive predictions that could have been made.

4F1-score provides a way to combine both precision and recall into
a single measure that captures both properties.

• M be the set of desired performance metrics to
be considered,

• P be the set of defined workflows,
• ŵm be the specific and desired value of the per-

formance metric m ∈ M, and
• wmp be the real value of performance metric ob-

tained for workflow p ∈ P in measure m ∈ M.

With this information at hand, we can define the
performance index as:

‖w‖p
2 =

√ ∑
m∈M

(wmp − ŵm)2 ∀p ∈ P . (1)

Lesser this value, the better is the predictive perfor-
mance of the workflow. With this index, we can select
the best workflow, and consequently, the best statis-
tical/machine learning model. In case of a tie, other
criteria can be used. Note that the performance met-
rics should be normalized; therefore, the maximum
and minimum values for each metric should be 1 and
0, respectively.

3.2.3. Bias-Variance Trade-off

One of the main tasks in the prediction work-
flow is to evaluate the generalization performance
of machine learning algorithms using an appropri-
ate resampling procedure. k-fold cross-validation is a
widely used resampling technique that can be used to
balance the bias and variance, and estimate the out-
of-sample predictive performance of machine learn-
ing models (Agarwal, Tang, Narayanan & Zhuang,
2020; Alipour, Mukherjee, & Nateghi, 2019; Hastie
et al., 2009; James et al., 2013; Jung, 2018; Mukher-
jee & Nateghi, 2019, 2017; Obringer, Mukherjee, &
Nateghi, 2020). This approach involves randomly di-
viding the set of observations into k-folds of approx-
imately equal sizes. In each iteration, the kth-fold is
treated as the test set, and the remaining k − 1-folds
as the training set. The test set is used to calculate
the models’ predictive accuracy, while the training set
is used to calculate the goodness-of-fit performance
of the models (Hastie et al., 2009). Further, the split-
ting of data into folds can be done ensuring that each
fold has the same proportion of observations for each
class of the response variable. This strategy is called
stratified cross-validation.

3.2.4. Hyperparameter Tuning

For most of the machine/statistical learning mod-
els, it is required to determine the optimal values
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of model hyperparameters. The workflow itself can
contribute to defining such values. A hyperparameter
is an external characteristic of a model whose value
cannot be estimated from data during the learning
process. The values of the hyperparameters are set
before the training of a model begins. Several mech-
anisms can be used to determine the optimal hyper-
parameters that lead to the superior performance of
the models. Examples include grid search (Lameski,
Zdravevski, Mingov, & Kulakov, 2015) and random
search (Bergstra & Bengio, 2012). In a grid search,
a whole set of combinations of the different values
for each hyperparameter is used, while in a random
search, only a few such combinations are used. The
reason to select random search over grid search is
mainly to reduce the computational cost that the grid
search implies. In our case study, we applied a strati-
fied cross-validation and random search approach in
each of the stages to tune the hyperparameters of our
finally selected models.

4. CASE STUDY

This section presents how our proposed method-
ology can be applied to a real sewer system infras-
tructure system to predict the failure risks. For this
purpose, we selected the sewer system for the city of
Bogotá (Colombia). We present a general overview
of the case study and explain how our methodology
can be implemented.

4.1. General Description

The sewer system infrastructure of the capital
city of Bogotá (Colombia) served as a testbed for our
study. Bogotá comprises a total area of 350 km2 and
more than 9,500 km of sewer pipes. The water and
sewer utility in the city, Empresa de Acueducto y Al-
cantarillado de Bogotá (EAAB), serves over 1.7 mil-
lion residential customers (family units) and about
400,000 commercial customers, with a coverage of
over 98% of the city (Empresa de Acueducto y Al-
cantarillado de Bogotá, 2015). The water utility di-
vides the city into five operative zones, each one with
its own manager and independent resources (equip-
ment and personnel) (Empresa de Acueducto y Al-
cantarillado de Bogotá, 2015). We selected zones 2
(76.72 km2) and 3 (76.75 km2) to perform our analy-
sis, as access to the required data was available only
for these two zones. Fig. 3 highlights the location of
these two zones within the city of Bogotá.

Fig 3. Operational zones 2 and 3, and distribution of weather sta-
tions used in our analyses.

4.2. Setup for Methodology Steps

In this section, we provide information about
the specific settings for each step of the proposed
methodology. We start by explaining the data collec-
tion process, and then, discuss the database design
through an illustration of how the data issues were
managed and how the spatiotemporal data were con-
structed. Subsequently, we present the specifics of
the prediction modeling in the context of our case
study. Finally, we provide additional details about the
implementation of our methodology and discuss the
practical implications of our results that can provide
insights to the water utility to optimally allocate re-
sources to manage the sewer system failure risks effi-
ciently.

4.2.1. Data Sources and Description

The data for this research were collected from
multiple sources, including several governmental and
private agencies such as the Institute of Hydrology,
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Table 3. Summary of Available Databases

Database Source Original Format Dimensionality
Spatial Temporal

Elevation EAAB Raster (Digital Elevation Model) �
Failures EAAB Text file � �
Gullypots EAAB Shape file (points) �
Intrusive trees JBB Shape file (points) �
Land use SDP Shape file (polygons) �
Manholes EAAB Shape file (points) �
Pipes EAAB Shape file (polylines) �
Population SDP Shape file (polygons) � �
Slope EAAB Raster �
Streets SDP Shape file (polylines) �
Weather IDEAM Text file � �

Table 4. List of Features in Each Database

Dabase Features

Elevation elevation, geographic coordinates
Failures date, geographic coordinates
Gullypots type (sanitary or stormwater), terrain elevation, material, installation date, geographic coordinates
Intrusive trees total height, root exposition, physiology, geographic coordinates
Land use type (residential, commercial, or industrial), geographic coordinates
Manholes type (sanitary or stormwater), terrain elevation, depth elevation, material, installation date, geographic

coordinates
Pipes type (sanitary or stormwater), service (main or local), terrain elevation, crown elevation, invert elevation, length,

material, installation date, diameter, geographic coordinates
Population date (year), population, geographic coordinates
Slope geographic coordinates, slope
Streets type (based on hierarchy—primary and secondary), weather station geographic coordinates
Weather date, total brightness, total evaporation, mean humidity, total precipitation, max temperature, mean temperature,

min temperature, geographic coordinates

Meteorology, and Environmental Studies (IDEAM
from its name in Spanish), EAAB, Bogotá’s Botan-
ical Garden (JBB from its name in Spanish), and
the District Planning Agency (SDP from its name in
Spanish). The information was obtained in different
formats such as shapes, rasters, and text files. Table 3
summarizes the databases, while Table 4 provides the
list of features present in each database.

Sewer system failure database. Bogotá’s sewer
system failure records are obtained from a customer
complaints database provided by the utility. The fail-
ure database is generated by the water utility using
the following steps: (1) first, the water and sewer util-
ity center receives and records the customer com-
plaints; (2) then, personnel is sent to the reported
address to verify the failure; and finally (3) veri-
fied failures and their coordinates are reported back
to the Customer Complaint Center including infor-
mation such as failure type (we only considered

sediment-related failures) and the required correc-
tive actions. For a detailed description of the cus-
tomer complaints database, the interested reader is
referred to Rodríguez et al. (2012). In this study, we
used the failure records data spanning over a period
of six years (2005–2010). Monthly distributions of
failures throughout the study period (see Fig. 4) are
apparently bimodal in nature, depicting their similar-
ity with the temporal distribution patterns of rainfall
in the region during the same time period (see Fig. 6).

Information on physical characteristics of sewer
system infrastructure. Similar to the failures,
databases related to physical information of the
sewer system infrastructure are provided by the util-
ity. In this regard, we have access to data related to
pipes, manholes, and gullypots. Our study area com-
prises two types of sewer pipes—sanitary (carries
sewage from bathrooms, sinks, kitchens, and other
plumbing components) and stormwater (designed
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Fig 4. Distribution of the number of failures in the city for every month of the period of study.

Sanitary manholes

Sanitary gullypots

Stormwater manholes

Stormwater gullypots

Sanitary sewer

Storm sewer

0 0.2 0.40.1 Km

Fig 5. Sewer system infrastructure elements.

to drain excess rain from impervious surfaces such
as paved streets, car parks, parking lots, roofs, etc.).
In total, our study areas comprising zones 2 and 3
cover an area of 153.2 km2 and include 3,758.5 km
of sewer pipes, of which 2,786.1 km corresponds to
the sanitary sewer and 972.4 km corresponds to the
stormwater sewer. Similarly, the study area contains
69,888 gullypots and 66,377 manholes. Fig. 5 shows a

zoomed snapshot of the case study area, illustrating
the spatial distribution of the physical infrastructure
elements in a few residential blocks (approximately
0.08 km2).

Other physical variables considered in the study
include elevation and slope. These variables, ob-
tained from the EAAB, contained specific informa-
tion for any geographical location of the city.
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Fig 6. Distribution of the daily average rain across the city.

Environmental factors. It is known that envi-
ronmental conditions can significantly influence the
occurrence of failures in the sewer system. Therefore,
we included several weather conditions in our study
such as total brightness, rainfall, temperature, humid-
ity, evaporation. The data were collected through the
local environmental authorities (i.e., IDEAM). The
specific data were obtained for 36 weather stations
scattered along the study area (see Fig. 3). Fig. 6
shows the distribution of average rainfall in the city
during the study period.

Demographic information. Demographic infor-
mation on population was obtained from the pub-
licly available most recent census data for Bogotá.
The governmental agency in charge of Colombia’s
official statistics performs demographic projections
using planning zone units (Unidad de Planeamiento
Zonal [UPZ]). Using 2005 census data, the SDP es-
timated the total population for each UPZ for the
period 2005–2015, which includes the analysis period
of this study. In addition to population data, we col-
lected land use data from the SDP that specifies if
the land is used for residential, commercial, or indus-
trial purposes.

Urban landscape information. Since previous
studies established that surrounding urban infras-
tructure and their interactions with the sewer system
can significantly influence the risk of failure, we in-

vestigated the influence of urban landscape on the
risk of sewer system failure (see Table 2). In this ar-
ticle, the urban landscape is described by urban el-
ements such as intrusive trees and streets. From the
tree species identified in the urban area of Bogotá,
the urban tree planting authority (JBB) has identi-
fied 54 tree species that are capable of causing root
intrusions. We extracted the location and information
of the 81,592 intrusive trees present in the case study
area from the most-updated tree census—elaborated
in 2007. Besides the (x,y) coordinates of each tree in
the urban area, the census contains tree species, to-
tal height, physiology, and a brief description of the
leaves and the site location, among other character-
istics. For more information on Bogotá’s tree cen-
sus, the interested reader is referred to Torres et al.
(2017).

We also included a geo-referenced database of
highways and streets in our study. This database
was gathered in 2013 and contained information
on each street segment classified into one out of
five categories: two for primary and three for sec-
ondary roads.

4.2.2. Database Design: Data Preprocessing and
Aggregation

The data were collected from several sources;
thus, the format and the dimensionality units varied
significantly among the different databases. There-
fore, the first step is to merge the data under the
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Fig 7. Intersection of data from different databases and the grid of equally-sized cells.

same metric system. It is important to note that the
sewer system failures reported by the users are not
associated with a particular component of the sewer
system (e.g., pipe, manhole, or gullypot); but rather
with an address that is converted into a point co-
ordinate in the zone where the failure is reported.
Despite this might pose a difficulty when identifying
the precise element that failed, this information does
provide insights on the areas of the city (i.e., block
or group of blocks) that are more likely to experi-
ence sewer system failures. Given the format of avail-
able information, Rodríguez et al. (2012) proposed to
partition the sewer system into a set of equally-sized
cells; the authors used a 170×170 m2 area such that it
corresponds to approximately one residential block.
Following this idea, in our study, we partitioned the
zones into equally-sized cells, where the cell size is
considered as the unit for space. The time unit consid-
ered is month, similar to that reported in the previous
studies by Rodríguez et al. (2012) and Soriano-Pulido
et al. (2019).

With this information at hand, we built a
database with the target variable y as the number of
failures reported in a cell in a specific month. Note
that the explanatory variables were constructed
based on the variables provided by the collected
databases (see Table 4). In this case, the explanatory
variables were computed as aggregated information
of the variables in the original databases (e.g., count-
ing of gullypots, counting of gullypots of a specific
material, counting of trees, sum of the length of the
streets). The complete list of constructed variables is

provided in Table B1 in the Appendix. Fig. 7 helps
to visualize this database construction by showing
how the equally-sized cells intersect with the data
collected from different databases. In the figure, we
observe pipelines (stormwater and sanitary), failures
in different periods of time, residential areas, precip-
itation for one period of time, trees, and streets for
an example grid.

Managing data issues. As described in Sec-
tion 3.1.1, addressing the data issues is instrumental
for predictive modeling. In this section, we focus on
addressing the issues for X, while the issues regard-
ing y are addressed in Section 4.2.3. Given that the
space unit is a cell, we constructed the explanatory
variables as aggregations (sum, average, counting) of
the original variables based on their intersection with
the predefined grid of equally-sized cells (see Table
B1). Nonetheless, to do that, we needed to impute
the missing data in the original databases first.

To impute missing data, we applied the method-
ology described in Section 3.1.1. More specifically,
we designed the dynamic neighborhoods based on
the partition of the zones into equally-sized cells.
Fig. 8 depicts the dynamic of the iteratively chang-
ing neighborhood. To impute missing values of nu-
merical data, we averaged the observations falling
within the neighborhood, referred to as the “mean”
approach; while for categorical data, we used a “ran-
dom approach,” which assigns a random value to
the missing data point based on the distribution of
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Fig 8. Three iterations defining the neighborhood used for the data imputation. From iteration 1 to 3, the neighborhood is increasing.
Iterations 1 and 2 do not have observations in the neighborhood; therefore, no data can be imputed. Iteration 3 provides observations
within the neighborhood and imputation can be performed.

Fig 9. Failures per month in a specific cell. Installation of new infrastructure over the time. Failures are only related to the existent infras-
tructure at the time of the failure. Failures between time t1 and t2 are related to the infrastructure installed in t1. Failures between time t2
and t3 are related to the infrastructure installed in t1 and t2, and so on.

the specific variable within the neighborhood. For
example, to impute terrain elevation for manholes,
we used average terrain elevation of other manholes
within the neighborhood, while for pipeline diameter
(which is not a continuous variable), we randomly se-
lected a diameter from the distribution of pipelines
diameters within the neighborhood. Note that addi-
tional constraints were added to the imputation pro-
cess, for example, considering pipelines within the
neighborhood that share the same material as the im-
puted observation.

Spatiotemporal data. Table 3 shows the dimen-
sionality of the data, while Table 4 presents the spe-
cific variables found in each dataset. As mentioned
in Section 3.1.2, to match the spatiotemporal dimen-
sions of our response variable, we transformed the
explanatory variables to account for the spatiotem-
poral perspective as well.

For those variables that are spatial, if there is any
type of time-dimension information (e.g., installation
date), their aggregated counterparts (as mentioned
in section “Managing data issues”) can be calculated
as spatiotemporal variables. For example, if the in-
stallation date for gullypots is given, in the final vari-
able “count of gullypots” used in the analysis, we only

consider those gullypots that were already installed
at the time of the failure. This process is depicted in
Fig. 9, where the failures in a specific cell between
time t1 and t2 are only related to the infrastructure in-
stalled at time t1 and before (in the illustration, just
one gullypot is shown) in such a cell. Similarly, fail-
ures between t2 and t3 are only related to the infras-
tructure installed in t2 and before (in the illustration,
a gullypot and a pipe). As new infrastructure is built
over time, the failures are related to the correspond-
ing infrastructure following this logic. This process
was applied to gullypots, manholes, and pipes in our
study. As an outcome of this method, we are remov-
ing the assumptions made by Rodríguez et al. (2012)
and Soriano-Pulido et al. (2019), who considered that
spatial variables related to the infrastructure remain
the same throughout the study period.

Likewise, for temporal variables possessing spa-
tial information (e.g., cartographic coordinates or an
identifier that can be joined to spatial objects), it
was possible to create their aggregated counterparts
(e.g., mean, minimum, and maximum values) over
the spatiotemporal dimension. For example, popula-
tion data (given originally per UPZ) are joined with
the corresponding polygons to observe population
variations in space and time. Similarly, weather data
from different weather stations were used to create
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Fig 10. Spatiotemporal database construction.

continuous surfaces over the space applying kriging
interpolation for each month (refer to Section 3.1.2).

Some variables were kept as spatial variables as
they do not vary over time, namely, slope and eleva-
tion. Besides, although land use, streets, and intrusive
trees may change over time, there was not enough in-
formation available to consider their temporal varia-
tions, and thus, they were kept as spatial variables.
Fig. 10 illustrates how the information was handled
to build the final dataset, specifying the operations to
transform raw data to the spatiotemporal dimension.

Following this procedure and the missing data
management described in Subsection 3.1.1, 222 ex-
planatory variables were considered when combining
all the datasets. Table B1 in the Appendix presents a
description of such variables and Fig. A1 shows the
correlation matrix for them. The number of observa-
tions in the analyzed datasets ranges from 10,000 to
100,000.

4.2.3. Predictive Modeling

The target variable (i.e., response variable y) for
this study represents the number of failures in each
cell every month, which is a spatiotemporal variable
(explained in Section 4.2.2). To predict such a re-

sponse variable, we propose to develop the two-stage
prediction model described in Section 3.2.1. As al-
ready explained before, both stages are supported by
our proposed prediction workflows. In the first stage,
y is transformed to have only two responses: no risk
N and risk R, where risk is associated with one or
more failures. In the second stage, y is also coded in
two categories: low-risk L and high-risk H. In doing
so, we use the observations classified as R in the first
stage, and then classify those observations with the
number of failures above the third quartile of the fail-
ure distribution curve as high risk (H), while all the
other observations (with the number of failures be-
low the third quartile) as low risk (L). True positives
(correctly identified data points under the failure risk
class R) that are obtained from the prediction results
of stage 1 act as the input data for the prediction
model (L/H) in stage 2 that is leveraged to predict
the failure risk levels.

The workflows in both the stages are defined as
observed in Fig. 1. As shown in the figure, the first
step in the workflow is scaling the input data. In this
step, only two possibilities were available, scale or
not scale. In the second step, the workflow involved
the utilization of sampling algorithms for balancing
the class distribution on training data. We considered
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six different alternatives—random oversampling and
undersampling (Yap et al., 2014), SMOTE (Chawla
et al., 2002), SMOTE with ENN (Batista et al.,
2004), near-miss (Mani & Zhang, 2003), and not
balancing the data. For more information regarding
these methods, the interested reader is referred
to Lemaître, Nogueira, and Aridas (2017). In the
thirds step, dimensionality reduction was performed.
Similar to the first step (scaling data), we considered
two possibilities in this step: reduce or not reduce the
dimensionality of the data. Reducing the dimension
of the input feature space is achieved using PCA.
This method uses an orthogonal transformation to
construct a low-dimensional representation of the
data that describes as much of the variance in the
data as possible (Vasan & Surendiran, 2016).

The final step in the workflow consists of train-
ing and testing the different parametric and nonpara-
metric (i.e., machine learning) models using the fi-
nal dataset. The models used include LR, DTs, RFs,
and XGBoost (XGB). LR is a classification algo-
rithm that assigns observations to a discrete set of
classes. Unlike linear regression, where predictions
are continuous values, LR transforms its output us-
ing the sigmoid function to return a probability value,
which can then be mapped to two or more discrete
classes (Dreiseitl & Ohno-Machado, 2002). In DT,
the training instances are classified into a tree struc-
ture using decision rules that are heuristically derived
during the learning phase (Lavanya & Rani, 2012).
The tree consists of decision nodes and leaf nodes
where each node represents a test over an attribute
of the input data and each leaf node has an associ-
ated class that is the outcome of the decision for a
particular case. RF is the evolution of DT; it is an en-
semble of DTs where the training set for each tree
is selected using bootstrap sampling from the origi-
nal sample set. The number of features that are con-
sidered for splitting at each tree node is a random
subset of the original set of features. The final esti-
mate of RF is the classification result that receives the
maximum number of votes across all trees (Breiman,
2001; Mukherjee & Nateghi, 2019). XGB is an en-
semble tree-based algorithm using gradient boosted
DTs (Chen & Guestrin, 2016). In XGB, a large num-
ber of weak learners are built and combined sequen-
tially to produce a strong learner. The difference be-
tween XGB and other gradient boosting algorithms
like gradient boosting machines or gradient boosting
trees (Agarwal et al., 2020) is due to its regulariza-
tion formalization to control overfitting. Indeed, the
name XGB refers to the goal of taking the computa-

tional power to its limits; using OpenMP API (Chap-
man, Jost, & Van Der Pas, 2008) for parallel process-
ing, XGB is able to utilize the multiple cores that are
available on a single machine’s CPU for parallel com-
putation (Chen et al., 2018).

Based on these steps, we generated a total of
96 different workflows (in order of workflow steps:
2 · 6 · 2 · 4). In addition to these 96 workflows, we
considered the default implementation of four extra
models, namely, balanced bagging classifier, balanced
RF classifier, easy ensemble classifier, and RUSBoost
classifier (Lemaître et al., 2017; Pedregosa et al.,
2011). Since these ensemble classifiers use the sam-
pling algorithms for internally balancing the data, it
reduces the number of steps in the workflow and
parameters that need to be provided by the user.
Therefore, for these classifiers, only the options for
scaling and dimensionality reduction were provided.
Therefore, a total of 16 additional workflows were
used (2 · 2 · 4). In this manner, we evaluated the per-
formance of |P| = 112 workflows in each stage in
each scenario.

To select the best workflow, we used the index
based on norm 2 defined in Section 3.2.2. For this
study, we considered two measures to be included
in the predefined index (i.e., |M| = 2). First, the
macroaverage of the F1-score in the test dataset, and
second, the absolute value of the difference of the
macroaverage of the F1-score 5 between the test and
training datasets. The F1-score is a well-established
classification performance measure that conveys a
balance between precision (P) and recall (R) (Zhang,
Wang, & Zhao, 2015). It is known to be more infor-
mative and useful than classification accuracy in case
of problems with a class imbalance. When only one
class is considered, the standard F1-score is defined
as the harmonic mean of P and R,

F1 = 2PR
P + R

, (2)

where

P = TPi

TPi + FPi
, (3)

R = TPi

TPi + FNi
, (4)

TPi is the number of test instances correctly assigned
to the class i (that is, the number of true positives),

5A macroaveraged F1-score is achieved simply by averaging the
scores over the classes.
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FPi is the number of test instances the system pre-
dicts mistakenly to be a member of the class i (that is,
the number of false positives), and FNi is the number
of test instances that belong to the class i in the real
data but not in the system output (that is, the number
of false negatives). As multilevel classification can be
decomposed into distinct binary classification prob-
lems, the F1-score can be calculated separately for
each class. Macroaverage F1-score treats all classes
equally regardless of the number of records within
a class, which helps to select the algorithm that per-
forms the best across all of the different labels.

The desired value for our first measure
(macroaveraged F1-score of the test dataset) is ŵ1 =
1, while for the second (absolute difference between
macroaverage F1-scores of test and training datasets)
is ŵ2 = 0. For each workflow p ∈ P , the index is cal-
culated as ‖w‖p

2 = √
(w1p − ŵ1)2 + (w2p − ŵ2)2 =√

(w1p − 1)2 + (w2p − 0)2. When a tie was obtained
through this exercise, we defined the best workflow
in terms of complexity—the less the complexity, the
better the workflow, per Occam’s razor rule. Such
complexity refers to the combination of the specific
algorithms used in each step of the workflow. For
example, a workflow not using a balancing method
is simpler than one using a balancing algorithm.
Once the best workflow was selected, we performed
stratified 10-fold cross-validation to control the
bias-variance trade-off. We also used this approach
as a part of the hyperparameter tuning process by
implementing a random search algorithm. When the
workflow for the first stage was optimized, the results
from this stage were used as inputs for the workflow
in the second stage, where the same process was
carried out again (i.e., 112 workflows were trained
for each scenario). Thus, we selected the pair (first
and second stage) that together produced the best
result in predicting the risk of failures.

4.2.4. Managerial Questions and Sensitivity
Analyses

As explained in Section 4.2.2, in the study con-
ducted by Rodríguez et al. (2012), the authors
used a set of equally-sized cells of a dimension of
170×170 m2 each to perform the analysis of the data.
Nonetheless, an interesting question arises from the
managerial perspective: “What is the adequate size
for the cells to make a robust prediction?” The selec-
tion of a single cell size renders it to be difficult to
evaluate whether this selection influences the qual-

ity of the results. Soriano-Pulido et al. (2019) fol-
lowed a similar procedure to that described by Ro-
dríguez et al. (2012) and found that the spatiotem-
poral relation of the failures should be studied with
cell sizes of at least 283 m of length. Based on this
fact, the authors first studied their data using cells of
400×400 m2 and when the number of failures in the
cells was not high enough, they changed the cell size
to 800×800 m2. In our study, we analyzed three possi-
ble sizes for the cells, 200×200 m2, 400×400 m2, and
800×800 m2. Fig. 11 shows the granularity of these
grids of equally-sized cells over the study area, in-
cluding 5,818, 1,521, and 418 cells for 200×200 m2,
400×400 m2, and 800×800 m2, respectively. Similarly,
Fig. 12 shows the density of cells per number of reg-
istered failures through the period of our study. Figs.
A2, A3, and A4 present animations of the failures’
behavior through the spatiotemporal dimension. To
identify the optimal cell size that would serve our
purpose, we used two criteria. First, the selected size
must help balance the data. Second, it must avoid the
extreme sensitivity of our model toward the marginal
changes in risk threshold as defined by the managers.

Another important question from the perspec-
tive of the utility managers that needs to be ad-
dressed is related to the independence of the zones
in managing their own resources in a decentralized
fashion. As we analyzed the behavior of failures in
the two different zones, we also studied whether con-
sidering the zones independently or as a whole gener-
ated differences in the management of resources and
scheduling of preventive maintenance operations. To
analyze this, we applied our methodology indepen-
dently to three datasets, namely, zone 2, zone 3, and
zones 2 and 3 combined. Thus, it is important to note
that our sensitivity analysis considered separately a
total of nine scenarios (i.e., three datasets—grid cell
sizes— and three zone types).

5. RESULTS

In Section 5.1, we present the results of the
model from the first stage (i.e., model predicting the
risk of a sewer system failure), and then in Sec-
tion 5.2, we describe the results of the model from
the second stage (i.e., model predicting if the sever-
ity of the risk corresponds to high or low risk).
More specifically, Section 5.1 presents the results for:
(1) 112 workflows constructed for each of the nine
scenarios mentioned in Section 4.2.4; (2) hyperpa-
rameter tuning for the nine best workflows, which
serves as a tool for the utility managers to define the
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Fig 11. Different grid sizes used for analysis.

Fig 12. Density curves in terms of the percentage of cells with a number of failures within specific ranges of failures. The figure shows the
density plot for the three different sizes for the cells.

discrimination threshold for N and R (i.e., probabil-
ity of failure) and also provides insights to select the
adequate size of the cells for robust decision making;
and (3) variable importance for the first-stage model.
In Section 5.2, we present the results for the second-
stage model considering the specific selection regard-
ing the size of the cells made in the first stage. We also
provide results for the relevant hyperparameter tun-
ing and feature importance for predicting low L and
high H risk.

5.1. Stage 1

As defined in Section 4.2.3, we used two main
performance metrics to construct our performance
index ‖w‖p

2 , which was used to select the best model.
The selection was made based on the minimum value
of such an index. Fig. 13 presents the results not
only for the index but also for the F1-score and ac-
curacy for each of the nine scenarios mentioned in
Section 4.2.4. The workflows were ordered alphabeti-
cally by—name, scaling, balancing, dimensionality re-
duction, and machine learning method.

In Fig. 13, we observed that as the cells’ size in-
creases, the value of our index decreases, providing

the best performance score for the 800×800 m2 cells.
In addition, it was observed that the other two met-
rics (F1-score and accuracy) increase as the size of
the cell increases. Although the increase in cell size
demonstrated better performance scores, there is an
important trade-off that must be carefully analyzed.
As observed from Fig. 12, with the increase in cell
size, the number of cells with the risk of failure (one
or more failures) increases, leading to a reduction
in the number of nonfailure observations from the
dataset.

In the plots depicted in Fig. 13, it is possible to
observe high values of accuracy for the 800×800 m2,
reaching up to 15% increased accuracy compared to
the grid size of 400×400 m2, while such an increase
is about 2% for 400×400 m2, compared to that of
the 200×200 m2. Note that unlike grid sizes 200×200
m2 and 800×800 m2, 400×400 m2 provided almost
similar values for both accuracy and F1-score. In the
case of 200×200 m2, there was a difference of al-
most 10% on average between these two measures,
while in the case of 800x800 m2, the difference be-
tween the scores was almost 3%. The reason behind
these observations is particularly related to the im-
balanced failure observations in the case of 200×200
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Fig 13. Our performance index, F1-score, and accuracy for the nine scenarios of the case study.

Table 5. Best Workflow for Each Scenario in Stage 1

Grid Zone Workflow Scaling Balancing method PCA ML model

200×200 2 99 Yes SMOTE No XGBoost
3 88 No SMOTE with ENN No Random Forest

Both 88 No SMOTE with ENN No Random Forest
400×400 2 104 No No Yes XGBoost

3 92 No No No XGBoost
Both 90 No No No XGBoost

800×800 2 92 No No No XGBoost
3 6 No No No Easy Ensamble

Both 94 No Random oversampling no XGBoost

m2 and 800×800 m2 (see Fig. 12). Higher the extent
of imbalance within the datasets, the higher the dif-
ference between F1-score and accuracy. These results
provide important insight to utility managers on the
selection of performance measures. Accuracy can be
used when the class-distribution is similar (in case of
400×400 m2), while F1-score is a better metric when
there are imbalanced classes (as observed in 200×200
m2 and 800×800 m2). Table 5 presents a summary
of the workflows selected and observed in Fig. 13. In
this table, it is observed that for grid sizes that have
imbalanced failure distributions such as 200×200 m2

and 800×800 m2, the best workflow included balanc-
ing methods to achieve better performance.

Fig. 14 presents how the F1-score of individ-
ual classes and the macroaverage F1-score between
classes were affected when the discrimination thresh-
old between failure and nonfailure changed. This fig-
ure serves to identify which workflows are more sta-
ble between different scenarios (cell size and type
of zones). This analysis is conducted in terms of the
marginal changes of the F1-score based on the se-
lected discrimination threshold. As it is evident from
Fig. 14, regardless of the dataset (zone 2, zone 3, or
both), the 400×400 m2 cell size provided the most
stable results for the F1-score. The other two cell
sizes presented extremely abrupt changes on the F1-
score when changing the threshold, meaning that



Original Research Article 2381

Fig 14. Discrimination threshold and its effect over the F1-score for the nine scenarios of the case study in stage 1.

those models were highly sensitive, and therefore,
could not be generalized irrespective of the type of
zones being considered for predicting the sewer sys-
tem failure risk. Thus, we selected the models corre-
sponding to the 400×400 m2 to continue our analysis.

As shown in previous studies, the receiver op-
erating characteristic (ROC) curve can be used as
a diagnostic metric for the prediction models (Li,
Wang, Leung, & Jiang, 2010; Terti et al., 2019). Fig. 15
presents the ROC curve to illustrate the diagnostic
performance of our selected workflows for 400×400
m2 as the discrimination threshold was varied. A
value of 0.5 for AUC suggests that the diagnostic
test has no discriminatory ability (Terti et al., 2019).
ROC curves above this diagonal line are considered
to have reasonable discriminating ability (Li et al.,
2010). In the field of medicine, 0.7 to 0.8 is consid-
ered acceptable, 0.8 to 0.9 is considered excellent,
and more than 0.9 is considered outstanding (Man-
drekar, 2010). Using this as a benchmark, we ob-
served that the AUCs for each zone were well above
0.8, thereby demonstrating excellent discriminating
ability of the workflow selected for 400×400 m2 grid.

To identify factors that represent vulnerability
for the sewer system infrastructure (Ezell, 2007), Ta-

Fig 15. ROC curve for scenarios in stage 1 with cell size of
400×400 m2. The AUCs are 0.85, 0.82, and 0.85 for Zone 2, Zone
3, and Both, respectively.

ble 6 shows the importance of variables, grouped
by different categories, as listed in the first column.
An example of a variable from each category is
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Fig 16. Our performance index, F1-score, and accuracy for the three scenarios of the case study in stage 2.

Table 6. Feature Importance Stage 1

Category Zone 2 Zone 3 Both Variable example

Age 0.709[01] 0.104[06] 0.065 [10] Average installation date sanitary gullypots
Diameter 0.000[11] 0.119[05] 0.122 [07] Number of main stormwater pipes of diameter 1
Elevation 0.000[12] 0.007[13] 0.004 [14] Terrain elevation
Gullypots 0.188[07] 0.091[08] 0.072 [08] Sanitary gullypots material 2
Intrusive trees 0.001[10] 0.087[09] 0.069 [09] Average height intrusive tree
Landuse 0.201[05] 0.038[10] 0.032 [11] Residential area
Local Pipelines 0.198[06] 0.461[02] 0.312 [02] Total local sanitary pipes length
Main Pipelines 0.172[08] 0.135[04] 0.154 [05] Total main sanitary pipes length
Manholes 0.222[04] 0.099[07] 0.133 [06] Total number of stormwater manholes
Sanitary components 0.325[03] 0.509[01] 0.420 [01] Number of local sanitary pipes
Slope 0.000[13] 0.003[14] 0.009 [13] Slope
Stormwater components 0.361[02] 0.205[03] 0.163 [04] Number of local stormwater pipes
Streets 0.013[09] 0.036[11] 0.176 [03] Sum of length of streets hierarchy 1
Weather 0.000[14] 0.024[12] 0.014 [12] Relative humidity
Zone 0.000[15] 0.000[15] 0.003 [15] Water utility operational zone

Variables are grouped by different characteristics. Interval between 0 - 1. Group of variables are not mutually exclusive. A rank is provided
in brackets

provided in the last column of the table (a com-
plete list of the variables and their categories is pro-
vided in Table B1). It can also be observed from Ta-
ble 6 that across the different zones, variables re-
lated to characteristics of sewer infrastructure such as
pipelines, manholes, sanitary, and stormwater com-
ponents have a significant effect on the prediction
performance of the failure risk models, represent-
ing the risk factors that potentially increase the vul-
nerability of the sewer system infrastructure (Ezell,
2007). The least influential variables are the ones
that are grouped under elevation, slope, streets, in-
trusive trees, and weather categories. Another impor-
tant observation is that the importance of the vari-
able categories related to age, streets, and intrusive
trees is sensitive to the zone type (Zone 1, Zone 2,
or Both). This provides important insight to utility
managers in identifying the influential risk factors
that can help in informed decision-making related

to maintenance activities and resources allocations in
the different zones.

5.2. Stage 2

In stage 1, it was observed that the values of
performance metrics (accuracy, F1-score, and our
proposed metric) were approximately similar for
400×400 m2 grid for the different zones due to a rel-
atively balanced failure class distribution. Addition-
ally, this grid size presented the most stable results
when analyzing F1-scores (individual and macroav-
erage) with respect to the discrimination threshold.
As a result, this grid size was chosen for subsequent
experimentation in stage 2 prediction. In Fig. 16, it is
observed that there is almost a 10% decline in the F1-
score as compared to the results presented in Fig. 13,
and the values of F1-score and accuracy differ from
each other by approximately 10%. This change in
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Fig 17. Discrimination threshold and its effect over the F1-score for the three scenarios of the case study in stage 2.

Table 7. Best Workflow for Each Scenario in Stage 2

Zone Workflow Scaling Balancing method PCA ML model

2 108 No Random Under Sampling Yes XGBoost
3 94 No Rand Over Sampling No XGBoost
Both 99 Yes SMOTE No XGBoost

the predictive performance while transitioning from
stage 1 to stage 2 is due to the imbalanced distribu-
tion of low-risk and high-risk failures (see definition
of L and H in Section 4.2.3). In Table 7, it is ob-
served that the imbalanced distribution also causes
the workflow to automatically incorporate balancing
algorithms to enhance the predictive performance.
Furthermore, XGBoost outperforms all the other
prediction models for all the scenarios.

Fig. 17 illustrates the sensitivity of F1-score per-
tinent to the individual classes and the macroaver-
aged F1-score among classes with respect to the dis-
crimination threshold between low-risk and high-risk
failures. Similar to Fig. 14, it is observed that, re-
gardless of the dataset (zone 2, zone 3, or both), the
400×400 m2 grid provided similar trends for the F1-
score. However, in these plots, when transitioning
from one zone to the other, the location of the in-
tersection between the three curves changed; this is
significantly different compared to that observed in
Fig. 14.

Fig. 18 presents the ROC curve to illustrate the
diagnostic performance of our selected workflow for
400×400 m2 as the discrimination threshold was var-
ied. Following the benchmark used in stage 1 predic-
tion, we observed that the AUCs for each zone were
well above 0.7, thereby demonstrating the accept-
able discriminating ability of the workflow selected
for 400×400 m2 grid in stage 2.

Table 8 shows the importance of variables from

Fig 18. ROC curve for scenarios in stage 2 with cell size of
400×400 m2. The AUCs are 0.74, 0.75, and 0.74 for Zone 2, Zone
3, and both, respectively.

the stage 2 prediction model grouped by differ-
ent categories, as listed in the first column. Similar
to observations in Table 6, across different zones,
variables related to characteristics of sewer infras-
tructure such as pipelines, manholes, sanitary, and
stormwater components have a significant effect on
the models’ prediction performance. The least in-
fluential variables are the ones that are grouped
under elevation, slope, streets, intrusive trees, and
weather categories. The importance of different vari-
able categories such as age, streets, intrusive trees,
and weather are sensitive to zone scenarios (Zone 1,
Zone 2, or both). Although insignificant in the case
of individual zones, weather characteristics appear to
have a comparatively higher significance while taking
both the zones into account.
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Table 8. Feature Importance Stage 2

Category Zone 2 Zone 3 Both Variables Example

Age 0.752[01] 0.125[06] 0.085[08] Average installation date sanitary gullypots
Diameter 0.000[12] 0.056[09] 0.072[10] Number of main stormwater pipes of diameter 1
Elevation 0.000[13] 0.006[15] 0.011[14] Terrain elevation
Gullypots 0.198[06] 0.119[07] 0.169[05] Sanitary gullypots material 2
Intrusive trees 0.002[11] 0.080[08] 0.134[06] Average height intrusive tree
Landuse 0.127[08] 0.044[10] 0.045[12] Residential area
Local pipelines 0.225[05] 0.278[02] 0.209[03] Total local sanitary pipes length
Main pipelines 0.151[07] 0.194[04] 0.174[04] Total main sanitary pipes length
Manholes 0.276[04] 0.177[05] 0.123[07] Total number of stormwater manholes
Sanitary components 0.402[02] 0.430[01] 0.373[01] Number of local sanitary pipes
Slope 0.000[14] 0.008[14] 0.014[13] Slope
Stormwater components 0.372[03] 0.261[03] 0.223[02] Number of local stormwater pipes
Streets 0.015[10] 0.038[11] 0.051[11] Sum of length of streets hierarchy 1
Weather 0.000[15] 0.037[12] 0.073[09] Average rainfall
Zone 0.035[09] 0.009[13] 0.003[15] Water utility operational zone

Variables Are Grouped by Different Characteristics. Interval Between 0 and 1. Group of Variables Are Not Mutually Exclusive

6. DISCUSSION AND MANAGERIAL
INSIGHTS

The results described above provide insights
about the system’s failure risks and can be used to
inform decision-makers when to make other deci-
sions related to system operations. For example, per-
tinent to our case study—predicting sewer system fail-
ure risks in the city of Bogotá, we learned that the op-
timal grid size to produce robust prediction models
corresponds to 400×400 m2. The size of a residential
neighborhood in our study area ranges from 0.1 to 0.3
km2 approximately; thus, the 0.16 km2 of the selected
cell size actually is placed within the neighborhood-
size interval. This selected size of the cell results con-
venient for maintenance operations, which can be
planned and scheduled based on the geographic de-
lineation of the residential neighborhoods.

Second, identifying the factors that drive the risk
of failure in the sewer system (i.e., the risk factors)
provides important managerial insights. In particular,
variables associated with the infrastructure age were
found to be an important predictor of the failure
risk. Additionally, it was also observed that the risk
of failure is affected more by the factors related to
the sanitary components rather than those related to
the stormwater components. In general, the weather
variables apparently have little influence on the risk
of failure (Stage 1). However, the weather variables
were found to be more important in predicting the
severity of the risk of failure (high/low risk), in case
the sewer system suffers a failure (Stage 2) (i.e., it acts
as an aggravating factor, see Table 8). In this case,

we also observed (from Stage 2) that the weather-
related variables play a significant role in predicting
the high/low failure risk when the study area spreads
over a wider geographical region (i.e., considering
both zones at the same time). The rationale is, as the
geographical area expands, the gradient/variance of
the weather-related variables also increases over that
region. Thus, our results support the resemblance be-
tween the distribution of failures and precipitation,
as described in section “Environmental factors.”

6.1. Validation of Results and Illustrating
Implications of the Results Using a Decision
Support Tool

To address additional managerial questions and
validate the results of our proposed two-stage risk
prediction model, we now consider a real-world sce-
nario in which a manager would leverage the risk
prediction model to make risk-informed operational
decisions. To do so, we applied our model to a new
dataset, which composed of six additional months
of data—the last three months in 2004 and the first
three months in 2011, therefore allowing us to have
data outside the time period of our analysis (i.e., a
dataset that was not used for the training and testing
of models). Besides validation, results from this ex-
ample were used to develop a decision support sys-
tem for risk-informed managerial decision-making.

To explain the applicability and usefulness of our
two-stage model in risk-informed managerial deci-
sion making, the decision support system is designed
in such a way that can incorporate the manager’s
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Fig 19. Decision support tool: dashboard with performance metrics as a function of the decision threshold, and a spatiotemporal confusion
matrix showing the assertiveness of our model for Zone 2. See also Figs. A5 and A6.

preferences/knowledge/experience in terms of selec-
tion of the decision threshold for failure risk (R, N)
as well as that for predicting the severity (low/high)
of failure risk (L, H). The decision support system
allows decision-makers to modify the discrimination
threshold while showing a dashboard with the mod-
els’ (Stages 1 and 2) performance metrics and per-
mitting the user to select a particular month to un-
derstand the risk of failure and its severity based on
a spatiotemporal confusion matrix. Using this sys-
tem, managers can analyze the risk of failure and the
severity of failure corresponding to different deci-
sion threshold values for different months as needed.
Fig. 19 shows a screenshot of such a tool applied for
Zone 2 sewer risk failure prediction.

Note that the developed decision support sys-
tem helps decision-makers select an optimal decision
threshold for predicting both failure risks (Stage 1)
and risk severity (Stage 2) and indicates whether the

maintenance planning should be conducted in a cen-
tralized or decentralized manner. For our case study,
the results indicate that the prediction is consider-
ably better when the zones are analyzed indepen-
dently rather than when they are analyzed together
(see Figs. 19, A5, and A6).

6.2. Optimization Exercise: An Illustrative
Example Showing Implications of the Results

To show the applicability of our results in a real-
world scenario and their importance in risk-informed
decision-making for preventive maintenance plan-
ning, we advance a step forward and illustrate how
the results/outputs from the prediction modeling can
be used as the inputs of a prescriptive model.

In this example, the planning and scheduling
of the maintenance operations in the sewer system
involve two decisions: first, determining the distri-
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Fig 20. (a) Distribution of under-risk cells to crews. The distribution is made to balance the responsibility of each crew. (b) Service order
for crew 4.

bution of tasks of the available crews (technicians
and equipment) (i.e., which cells will be served for
which crew); and second, identifying the route for
each crew to conduct such maintenance operations.
From the perspective of a manager, both decisions
are to be made over a planning horizon aiming to:
(1) balance the responsibility of each crew with re-
spect to their pairs and (2) to minimize the traveled
distance while guaranteeing that the cells with higher
risk receive priority.

This problem is defined over a directed graph
G = (N , E ), where N = Nc ∪ {0} represents the set
of cells and the depot (where the crews are based and
dispatched from). The set of cells Nc = {1, 2, . . . , n} is
geographically distributed and possess a risk level as-
sociated with the probability pi of high risk (H) for
each i ∈ N . There is a set R of identical crews avail-
able to conduct the maintenance operations that are
dispatched from a single depot (indexed by i = 0).
The set E = {{i, j} : i, j ∈ N , j > i} contains the edges
connecting all cells. The travel distance de for each
edge e ∈ E is deterministic and known. The goal is to:
(1) define the distribution of cells per crew that max-
imizes the minimum of the reliability for which each
crew is responsible, and (2) find a set of routes ζ over
G that minimizes the total expected traveled distance
while giving priority to those cells with a higher prob-
ability of high risk.

In a practical setting, one would expect the fol-
lowing optimization approach to be used dynamically
using a rolling horizon. That is, the cell distribution
and maintenance routes are generated via the opti-

mization models using as input the risk-level proba-
bilities at a given point in time. Then, after a prede-
fined time window elapses and while possibly some
maintenance tasks are still being executed, the opti-
mization models are resolved using as input the up-
dated failure risk probabilities for the new period.
This produces a reoptimized set of routes that con-
siders the spatiotemporal characteristics of the pre-
dicted data.

Generating this type of dynamic solutions is of
high importance because the service time duration
of some maintenance operations is long enough so
that the completion of the entire set of tasks assigned
to each crew may take multiple days, and the fail-
ure risk levels of some cells may change while the
maintenance tasks of some others are still being com-
pleted. This particular consideration is of notable im-
portance for the maintenance scheduling problem.
However, given the illustrative purposes of this sec-
tion, we limit our discussion to a static model to de-
pict one of the many uses of the predicted failure risk
probabilities to support the strategic management of
sewer systems.

6.2.1. A Model to Assign the Tasks for Each Crew

Let 1 − pi be the reliability of cell i ∈ N , β be
a parameter indicating the maximum accepted per-
centage of imbalance in the number of cells assigned
to each crew, z be a variable that represents the mini-
mum of the average reliability for which a crew is re-
sponsible for, xi j be a variable that takes the value of
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1 if cell i ∈ N is assigned to crew j ∈ R, the following
model represents the maximization of the minimum
average reliability for which each crew is responsible
for:

max z (5)

s.t. z ≤

∑
i∈N

(1 − pi)xi j

∑
i∈N

xi j

∀ j ∈ R, (6)

∑
j∈R

xi j = 1 ∀i ∈ N , (7)

∑
i∈N

xi j ≤ |N |
|R| (1 + β) ∀ j ∈ R, (8)

xi j ∈ {0, 1} ∀i ∈ N , j ∈ R. (9)

z ≥ 0 (10)

The expression (5) maximizes the minimum average
reliability for each crew. The set of constraints (6)
traps the minimum of the average reliability among
the crews. The set of constraints (7) guarantees that
each cell is assigned to one crew. The set of con-
straints (8) guarantees that the number of cells as-
signed to each crew will be imbalanced at most for
β percent. Constraints (9) and (10) represent the na-
ture of the variables. It is worth noting that the ra-
tios present in constraints 6 can be linearized by tra-
ditional methods (Wolsey, 2020).

6.2.2. A Model to Route Crews

With the previous model’s output, we will have
the distribution of cells that should be served for each
crew. With this at hand, another optimization model
can be built to define the order in which the cells
must be served per the crews. One additional goal
from the manager’s perspective is the minimization
of the traveled distance (as it consumes resources)
while prioritizing those cells with a higher risk of
sewer system failure. To do so, let us first define an
auxiliary parameter ce = de(1 − pi)(1 − pj ) where i
and j represent the two cells connected by edge e.
With this at hand, we formulate a traveling sales-
man problem (TSP). Here, we lend the TSP to de-
fine the ordering in the service for the cells. The

TSP is a well-studied problem in the operations re-
search literature and several formulations and meth-
ods have been developed to solve it. For the pur-
pose of this project, we used the symmetric version
of the Dantzig–Fulkerson–Johnson formulation (Ap-
plegate, Bixby, Chvatal, & Cook, 2006).

6.2.3. Optimization Results

To build this exercise, some additional informa-
tion such as the number of available crews to perform
maintenance was needed and collected from the pre-
vious work by Fontecha et al. (2020). With this in-
formation at hand and the results of our prediction
modeling in Stage 2 for November 2004 (as shown
in Fig. 19), we first assigned the cells that should be
served for each crew (see Section 6.2.1), and then we
identified the order in which each of the cells needs
to be served based on their probability of high risk
(see Section 6.2.2).

Fig. 20(a) presents the distribution of cells per
crew. Note that the distribution, in this case, was
made in such a way that the risk/reliability for each
of the responsible crews is balanced (i.e., every crew
is responsible for a similar number of cells and for a
similar total value of risk). Fig. 20(b) shows the or-
der in which the cells should be served by crew 4, as
an example. Note that the distance itself is not the
minimum—this is because cells with a higher proba-
bility for a high risk are prioritized.

7. CONCLUSIONS

In this article, we proposed a novel two-stage
data-driven framework to predict the risk of sewer
system failures while considering spatiotemporal
data and intrinsic data imperfections (i.e., imbal-
anced data, missing values, and outliers). We tested
the performance of our methodology by predicting
the risk of sediment-related failures in two out of the
five operational zones of Bogotá (Colombia). The re-
sults obtained validate the capabilities of our frame-
work to analyze the failure risk of large-scale infras-
tructure systems with limited data while providing
key managerial insights about the system. Further-
more, we provided a decision support tool that uses a
dashboard to show the performance of the predictive
models under different discrimination thresholds. Fi-
nally, we developed an illustrative optimization ex-
ample to use the results from the data-driven risk as-
sessment predictive models to plan and schedule the
maintenance operations in the study area.



2388 Fontecha et al.

Our framework has proven to be flexible, pro-
viding more versatility to utility managers to decide
how maintenance should be carried out with respect
to grid size, zone scenarios, discrimination thresh-
old, and performance metric selection in the predic-
tion models. Also, the failure risk prediction model
proved to be robust, validating its performance on a
completely new dataset that was not used for training
the algorithms.

The sensitivity analysis developed for the case
study showed their usefulness to aid managers in
identifying whether a decentralized or centralized
management of the failure risk in sewer system
infrastructure is more adequate or not. Although
weather variables showed to have no influence on
the risk of failure, once the system fails, they do
contribute to increasing the severity of the risk (i.e.,
changing the risk level from low to high risk). The ex-
ercise of identifying which cell size renders the best
predictive accuracy for the models also revealed that
the managerial decisions can be taken using residen-
tial neighborhoods, whose area is similar to that cov-
ered by a cell. In that sense, the selection of the size
of the cell can be crucial not only for the stability and
robustness of the prediction models but also for the
decision-making process in practice and for the plan-
ning of the maintenance operations.

This article also exemplifies how our results
can assist operational decisions and how the in-
sights derived from our analysis can support strate-
gic decisions. The classification of zones (cells or
areas) into risk levels could be used to prioritize
the sewer sections that require engineering inter-
ventions to increase their reliability. Examples of
such interventions are expansions of the sewer sys-
tem capacity or replacements of piped sections with
self-cleansing sewer pipes that guarantee sediment
transport (Montes, Berardi, Kapelan, & Saldarriaga,
2020; Montes, Kapelan, & Saldarriaga, 2019). Alter-
natively, Sustainable Urban Drainage Systems (Gh-
odsi, Zahmatkesh, Goharian, Kerachian, & Zhu,
2020; Torres, Fontecha, Zhu, Walteros, & Rodríguez,
2020) can be placed to alleviate the sediments load
from runoff (Maringanti, Chaubey, & Popp, 2009).
From a larger perspective, results presented herein
constitute a building block to the planning of ur-
ban renewal interventions. The latter, in synchrony
with other urban structures analyses (e.g., trees,
highways, cycling paths, or sidewalks [Rodriguez-
Valencia, Barrero, Ortiz-Ramirez, & Vallejo-Borda,
2020; Vallejo-Borda, Cantillo, & Rodriguez-Valencia,
2020]), represent an opportunity for urban renewal,

while decreasing the risk of failure and improving
the perception of sewer system quality of service
(Vallejo-Borda, Ortiz-Ramirez, Rodriguez-Valencia,
Hurtubia, & de D. Ortúzar, 2020).

Finally, our proposed framework can also be
applied for data-driven preventive maintenance of
other public facilities such as roads, bridges, elec-
tricity transmission lines, and water supply lines by
providing valuable information about location, time,
and type of failures that are likely to happen. For
example, in the case of maintenance of roads and
highways, the presented framework can be leveraged
using volumes of available data that are based on
several factors such as climatic variables, structural
characteristics, traffic load, age, and drainage condi-
tion to provide answers related to different parts of
the transportation system such as when to carry out
maintenance, what resources are required, and how
to carry out maintenance for maximum efficiently at
reduced costs.
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Fig. A1. Correlation matrix for the 222 variables.
Blue indicates a correlation under 0.7, and red indi-
cates otherwise.
Fig. A2. Distribution of sediment-related failures
over the spatiotemporal dimension on a grid of
200×200 m2. Press play to see the distribution.
Fig. A3. Distribution of sediment-related failures
over the spatiotemporal dimension on a grid of
400×400 m2. Press play to see the distribution.
Fig. A4. Distribution of sediment-related failures
over the spatiotemporal dimension on a grid of
800×800 m2. Press play to see the distribution.
Fig. A5. Decision support tool: dashboard with per-
formance metrics as a function of the decision thresh-
old, and a spatiotemporal confusion matrix showing
the assertiveness of our model for Zone 3.
Fig. A6. Decision support tool: dashboard with per-
formance metrics as a function of the decision thresh-
old, and a spatiotemporal confusion matrix showing
the assertiveness of our model for both zones to-
gether.
Table B1. Name, Description, and General Informa-
tion of the Variables used in Our Analysis


